CF938E Max History
Description
You are given an array $ a $ of length $ n $ . We define $ f_{a} $ the following way:
- Initially $ f_{a}=0 $ , $ M=1 $ ;
- for every $ 2
Input Format
The first line contains integer $ n $ ( $ 1
Output Format
Print the only integer, the sum of $ f_{a} $ over all $ n! $ permutations of the array $ a $ modulo $ 10^{9}+7 $ .
Explanation/Hint
For the second example all the permutations are:
- $ p=[1,2,3] $ : $ f_{a} $ is equal to $ 1 $ ;
- $ p=[1,3,2] $ : $ f_{a} $ is equal to $ 1 $ ;
- $ p=[2,1,3] $ : $ f_{a} $ is equal to $ 1 $ ;
- $ p=[2,3,1] $ : $ f_{a} $ is equal to $ 1 $ ;
- $ p=[3,1,2] $ : $ f_{a} $ is equal to $ 0 $ ;
- $ p=[3,2,1] $ : $ f_{a} $ is equal to $ 0 $ .
Where $ p $ is the array of the indices of initial array $ a $ . The sum of $ f_{a} $ is equal to $ 4 $ .