CF961F k-substrings
Description
You are given a string $ s $ consisting of $ n $ lowercase Latin letters.
Let's denote $ k $ -substring of $ s $ as a string $ subs_{k}=s_{k}s_{k+1}..s_{n+1-k} $ . Obviously, $ subs_{1}=s $ , and there are exactly  such substrings.
Let's call some string $ t $ an odd proper suprefix of a string $ T $ iff the following conditions are met:
- $ |T|>|t| $ ;
- $ |t| $ is an odd number;
- $ t $ is simultaneously a prefix and a suffix of $ T $ .
For evey $ k $ -substring () of $ s $ you have to calculate the maximum length of its odd proper suprefix.
Input Format
The first line contains one integer $ n $ $ (2
Output Format
Print  integers. $ i $ -th of them should be equal to maximum length of an odd proper suprefix of $ i $ -substring of $ s $ (or $ -1 $ , if there is no such string that is an odd proper suprefix of $ i $ -substring).
Explanation/Hint
The answer for first sample test is folowing:
- 1-substring: bcabcabcabcabca
- 2-substring: cabcabcabcabc
- 3-substring: abcabcabcab
- 4-substring: bcabcabca
- 5-substring: cabcabc
- 6-substring: abcab
- 7-substring: bca
- 8-substring: c