P10514 考试

题目背景

人生有梦,各自精彩。

题目描述

有 $n$ 名同学去参加考试,考试有 $m$ 道题。 每个学生的实力是相同的,但是每道题的难度可能不同。第 $i$ 道题会有随机的 $a_i$ 名同学做错。 考试结束后,随机选出 $k$ 名同学,求出这些同学全部做对的概率。答案对 $998244353$ 取模。

输入格式

第一行三个整数 $n,m,k$。 第二行 $m$ 个整数,第 $i$ 个数表示 $a_i$。

输出格式

一个整数,表示答案取模后的结果。

说明/提示

**【样例解释】** 随机选出 $2$ 名同学全部做对的概率为 $\frac{243}{25000}$,对 $998244353$ 取模后答案为 $793364682$。 可以证明答案一定为有理数。若不了解有理数取模,可以参照[【模板】有理数取余](https://www.luogu.com.cn/problem/P2613)。 **【数据范围】** - 对于 $30\%$ 的数据,$1\leq n,m \leq 10$; - 另外有 $10\%$ 的数据,$k=0$; - 另外有 $20\%$ 的数据,$1 \leq n \leq 1000$,$1\leq m \leq 10^5$; 对于所有数据,保证 $1\leq n,m\leq 10^5$,$0\leq k,a_i\leq n$。