[NOIP2009 提高组] 最优贸易

题目描述

$C$ 国有 $n$ 个大城市和 $m$ 条道路,每条道路连接这 $n$ 个城市中的某两个城市。任意两个城市之间最多只有一条道路直接相连。这 $m$ 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道路在统计条数时也计为 $1$ 条。 $C$ 国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价格不一定相同。但是,同一种商品在同一个城市的买入价和卖出价始终是相同的。 商人阿龙来到 $C$ 国旅游。当他得知同一种商品在不同城市的价格可能会不同这一信息之后,便决定在旅游的同时,利用商品在不同城市中的差价赚回一点旅费。设 $C$ 国 $n$ 个城市的标号从 $1\sim n$,阿龙决定从 $1$ 号城市出发,并最终在 $n$ 号城市结束自己的旅行。在旅游的过程中,任何城市可以重复经过多次,但不要求经过所有 $n$ 个城市。阿龙通过这样的贸易方式赚取旅费:他会选择一个经过的城市买入他最喜欢的商品――水晶球,并在之后经过的另一个城市卖出这个水晶球,用赚取的差价当做旅费。由于阿龙主要是来 $C$ 国旅游,他决定这个贸易只进行最多一次,当然,在赚不到差价的情况下他就无需进行贸易。 假设 $C$ 国有 $5$ 个大城市,城市的编号和道路连接情况如下图,单向箭头表示这条道路为单向通行,双向箭头表示这条道路为双向通行。 ![](https://cdn.luogu.com.cn/upload/image_hosting/flre534z.png) 假设 $1\sim n$ 号城市的水晶球价格分别为 $4,3,5,6,1$。 阿龙可以选择如下一条线路:$1\to2\to3\to5$,并在 $2$ 号城市以 $3$ 的价格买入水晶球,在 $3$ 号城市以 $5$ 的价格卖出水晶球,赚取的旅费数为 $2$。 阿龙也可以选择如下一条线路:$1\to4\to5\to4\to5$,并在第 $1$ 次到达 $5$ 号城市时以 $1$ 的价格买入水晶球,在第 $2$ 次到达 $4$ 号城市时以 $6$ 的价格卖出水晶球,赚取的旅费数为 $5$。 现在给出 $n$ 个城市的水晶球价格,$m$ 条道路的信息(每条道路所连接的两个城市的编号以及该条道路的通行情况)。请你告诉阿龙,他最多能赚取多少旅费。

输入输出格式

输入格式


第一行包含 $2$ 个正整数 $n$ 和 $m$,中间用一个空格隔开,分别表示城市的数目和道路的数目。 第二行 $n$ 个正整数,每两个整数之间用一个空格隔开,按标号顺序分别表示这 $n$ 个城市的商品价格。 接下来 $m$ 行,每行有 $3$ 个正整数 $x,y,z$,每两个整数之间用一个空格隔开。如果 $z=1$,表示这条道路是城市 $x$ 到城市 $y$ 之间的单向道路;如果 $z=2$,表示这条道路为城市 $x$ 和城市 $y$ 之间的双向道路。

输出格式


一个整数,表示最多能赚取的旅费。如果没有进行贸易,则输出 $0$。

输入输出样例

输入样例 #1

5 5 
4 3 5 6 1 
1 2 1 
1 4 1 
2 3 2 
3 5 1 
4 5 2 

输出样例 #1

5

说明

【数据范围】 输入数据保证 $1$ 号城市可以到达 $n$ 号城市。 对于 $10\%$ 的数据,$1\leq n\leq 6$。 对于 $30\%$ 的数据,$1\leq n\leq 100$。 对于 $50\%$ 的数据,不存在一条旅游路线,可以从一个城市出发,再回到这个城市。 对于 $100\%$ 的数据,$1\leq n\leq 100000$,$1\leq m\leq 500000$,$1\leq x,y\leq n$,$1\leq z\leq 2$,$1\leq $ 各城市的编号 $\leq n$。 水晶球价格 $\leq 100$。 NOIP 2009 提高组 第三题