P10909 [蓝桥杯 2024 国 B] 立定跳远

题目描述

在运动会上,小明从数轴的原点开始向正方向立定跳远。项目设置了 $n$ 个检查点 $a_1, a_2, \cdots , a_n$ 且 $a_i \ge a_{i−1} > 0$。小明必须先后跳跃到每个检查点上且只能跳跃到检查点上。同时,小明可以自行再增加 $m$ 个检查点让自己跳得更轻松。 在运动会前,小明制定训练计划让自己单次跳跃的最远距离达到 $L$,并且学会一个爆发技能可以在运动会时使用一次,使用时可以在该次跳跃时的最远距离变为 $2L$。小明想知道,$L$ 的最小值是多少可以完成这个项目?

输入格式

输入共 $2$ 行。 第一行为两个正整数 $n,m$。 第二行为 $n$ 个由空格分开的正整数 $a_1, a_2, \cdots, a_n$。

输出格式

输出共 $1$ 行,一个整数表示答案。

说明/提示

**【样例说明】** 增加检查点 $10, 13, 19$,因此每次跳跃距离为 $1,2, 2, 5, 3, 3, 3, 2$,在第三次跳跃时使用技能即可。 **【评测用例规模与约定】** 对于 $20\%$ 的评测用例,保证 $n \le 10^2$,$m \le 10^3$,$a_i \le 10^3$。 对于 $100\%$ 的评测用例,保证 $2 \le n \le 10^5$,$m \le 10^8$,$0 < a_i \le 10^8$。