P11402 [Code+#8 初赛] 图

题目背景

搬运自 [Code+ #8 初赛](https://gitlink.org.cn/thusaa/codeplus8pre)。

题目描述

本题中,对于一个无重边自环的无向图,称图上的一条道路为**简单路**当且仅当其不经过重复节点。即,假设该道路经过的节点依次为 $(u_1,u_2,\cdots,u_k)$,则这条道路为简单路当且仅当 $u_1,u_2,\cdots,u_k$ 两两不同。 给出大质数 $P$ 和 $q$ 次询问,每组询问给出正整数 $n$,你需要求出满足以下所有条件的**有标号**无向图个数,对 $P$ 取模: 1. 图有 $n$ 个节点且不存在重边与自环; 2. 图上不存在边数为 $3$ 的简单路,即图上无法找到四个两两不同的节点 $u_1,u_2,u_3,u_4$ 满足 $(u_1,u_2),(u_2,u_3),(u_3,u_4)$ 均在图中; 3. 在满足条件 1 和 2 的基础上,图的边数最多。

输入格式

输入的第一行包含两个正整数 $q$, $P$,保证 $q \le 100,000$,分别表示询问次数和模数。 接下来 $q$ 行每行包含一个正整数 $n$,保证 $n \le 3 \times 10^7$,描述一次询问。

输出格式

对于每组询问输出一行一个非负整数,表示满足条件的有标号无向图个数对 $P$ 取模的值。

说明/提示

**【样例解释】** 以下样例解释将用 $1$ 到 $n$ 之间的整数给每个节点进行编号。 对于第一组询问,只有边集为 $\varnothing$ 的图满足条件。 对于第二组询问,其中两个满足条件的图的边集分别为 ${(1,2)(2,3)(1,3)(4,5)(5,6)(4,6)}$ 和 ${(1,3)(3,5)(1,5)(2,4)(4,6)(2,6)}$。 **【数据范围】** 对于全部数据,保证 $10^8\lt P\lt 10^9$ 且 $P$ 是素数。 本题共 $5$ 个测试点: 测试点 $1$ 保证 $n,q\le8$,分值为 $20$ 分; 测试点 $2$ 保证 $n,q\le200$,分值为 $15$ 分; 测试点 $3$ 保证 $n,q\le3000$,分值为 $15$ 分; 测试点 $4$ 保证 $n\le500,000,q\le100,000$,分值为 $20$ 分; 测试点 $5$ 保证 $n\le3\times10^7,q\le100,000$,分值为 $30$ 分。