P11957 「ZHQOI R1」Power Sum
Description
Given integers $ n, x, k $, compute the value of the following expression:
$$
\sum_{i=0}^n (-1)^{\text{popcnt}(i)} (i + x)^k
$$
where the result is taken modulo $ 998244353 $.
**Special Note**: $ 0^0 $ is defined as $ 1 $.
Here, $ \text{popcnt}(x) $ denotes the number of $1$'s in the binary representation of $ x $.
Input Format
A single line containing three integers $ n, x, k $.
Output Format
Output a single integer representing the answer.
Explanation/Hint
**Constraints**
**This problem uses subtask scoring.**
For all test cases:
- $ 0 \leq n \leq 10^{12} $,
- $ 0 \leq x \leq 10^9 $,
- $ 0 \leq k \leq 10^5 $.
| Subtask | $ n \leq $ | $ k \leq $ | Score |
| :-----: | :---------------: | :----------: | :----: |
| 1 | $ 10^6 $ | $ 10^5 $ | $ 7 $ |
| 2 | $ 10^8 $ | $ 10^5 $ | $ 8 $ |
| 3 | $ 10^{12} $ | $ 0 $ | $ 5 $ |
| 4 | $ 10^{12} $ | $ 1 $ | $ 10 $ |
| 5 | $ 10^{12} $ | $ 2 $ | $ 10 $ |
| 6 | $ 10^{12} $ | $ 100 $ | $ 10 $ |
| 7 | $ 10^{12} $ | $ 10^3 $ | $ 15 $ |
| 8 | $ 10^{12} $ | $ 10^4 $ | $ 15 $ |
| 9 | $ 10^{12} $ | $ 10^5 $ | $ 20 $ |