P12148 【MX-X11-T2】So I Gave Up on Music
Background
原题链接:。
---
$$\text{考えたってわからないし}$$
$$\text{青空の下、君を待った}$$
$$\text{風が吹いた正午、昼下がりを抜け出す想像}$$
$$\text{ねぇ、これからどうなるんだろうね}$$
$$\text{進め方教わらないんだよ}$$
Description
On an infinite chessboard, there are $n$ **distinct** pieces at positions $(x_i, y_i)$. You must delete all pieces by performing the following operation multiple times:
1. Choose a grid $(x, y)$.
2. If there is a piece at $(x, y)$, delete it. Otherwise, end the current operation.
3. **Sequentially** check the grids at $(x+1, y+1)$, $(x+1, y)$, and $(x+1, y-1)$. Upon finding the first grid with a piece, stop checking, update $(x, y)$ to this grid's coordinates, and return to Step 2. If none of these grids contain a piece, end the current operation.
Determine the minimum number of operations required to delete all pieces.
Input Format
The first line contains a positive integer $n$ indicating the number of pieces.
The next $n$ lines each contain two positive integers $x_i$, $y_i$ representing the coordinates of a piece. **All positions are guaranteed to be distinct**.
Output Format
Output a single positive integer representing the minimum number of operations needed.
Explanation/Hint
## Explanation #1
For the first sample, the chessboard is shown below:

- First operation: Choose $(1, 3)$. This deletes the pieces at $(1, 3)$, $(2, 2)$, and $(3, 3)$.
- Second operation: Choose $(3, 1)$. This deletes the piece at $(3, 1)$.
It can be proven that no better strategy exists.
## Constraints
**This problem uses subtask scoring.**
For all test data: $1 \le n \le 10^6$, $1 \le x_i, y_i \le 10^6$.
| Subtask | $n \le$ | $x_i, y_i \le$ | Special Property | Points |
|:---------:|:---------------:|:----------------:|:-------------------:|:--------:|
| 1 | $10^6$ | $10^6$ | A | 10 |
| 2 | $8$ | $10^6$ | None | 20 |
| 3 | $300$ | $300$ | None | 20 |
| 4 | $5 \times 10^4$ | $5 \times 10^4$ | None | 20 |
| 5 | $10^6$ | $10^6$ | None | 30 |
- **Special Property A**: All $x_i$ are equal.
Translated by DeepSeek R1