P13009 【MX-X13-T4】"KDOI-12" Competitiveness is Human Nature, Utility is Society's Nature
Description
Given a sequence of positive integers $a_1, \ldots, a_n$ of length $n$ and a positive integer $m$ satisfying $m \geq \max a_i$, you can perform any number of operations (including zero) on the sequence. In each operation, you may select an interval $[l, r]$ and for all $l \leq i \leq r$, set $a_i \gets \left\lfloor \frac{m}{a_i} \right\rfloor$.
Your task is to determine:
1. The maximum possible value of $\sum_{j=1}^n a_j$ achievable through these operations.
2. The minimum number of operations required to achieve this maximum sum.
Input Format
**This problem contains multiple test cases.**
- The first line contains a positive integer $T$, the number of test cases.
- For each test case:
- The first line contains two positive integers $n$ and $m$.
- The second line contains $n$ positive integers $a_1, \ldots, a_n$.
Output Format
For each test case, output two non-negative integers:
1. The maximum possible sum $\sum_{j=1}^n a_j$.
2. The minimum number of operations required to achieve this sum.
Explanation/Hint
### **Sample Explanation**
For the second test case in the sample input, selecting the following 3 intervals achieves the maximum sum of $28$:
1. $[1, 2]$
2. $[2, 5]$
3. $[4, 5]$
It can be proven that this is one of the optimal solutions.
### **Data Range**
**This problem uses bundled testing.**
| Subtask | Points | $n \leq$ | $\sum n \leq$ | Special Properties |
|:--:|:--:|:--:|:--:|:--:|
| $1$ | $9$ | $4$ | $400$ | None |
| $2$ | $27$ | $10^3$ | $10^4$ | None |
| $3$ | $11$ | $10^5$ | $10^6$ | A |
| $4$ | $16$ | $10^5$ | $10^6$ | B |
| $5$ | $37$ | $10^5$ | $10^6$ | None |
- **Special Property A**: $a_i \leq \sqrt{m}$.
- **Special Property B**: $a_i$ divides $m$ (i.e., $a_i \mid m$).
For all test cases:
- $1 \leq T \leq 10^5$,
- $1 \leq n \leq 10^5$,
- $1 \leq \sum n \leq 10^6$,
- $1 \leq a_i \leq m \leq 10^{12}$.
---
*Translated by DeepSeek V3.*