P13950 [EC Final 2019] Value
Description
$\textit{Pang}$ believes that one cannot make an omelet without breaking eggs.
For a subset $A$ of $\{1,2,\ldots,n\}$, we calculate the score of $A$ as follows:
- Initialize the score as $0$.
- For any $i\in A$, add $a_i$ to the score.
- For any pair of integers $(i, j)$ satisfying $i\ge 2$, $j\ge 2$, $i\in A$ and $j\in A$, if there exists positive integer $k > 1$ such that $i^k=j$, subtract $b_j$ from the score.
Find the maximum possible score over the choice of $A$.
Input Format
The first line contains a single integer $n$ $(1\le n\le 100000)$.
The second line contains $n$ integers $a_1,a_2,\ldots,a_n$ $(1\le a_i\le 1000000000)$.
The third line contains $n$ integers $b_1,b_2,\ldots,b_n$ $(1\le b_i\le 1000000000)$.
Output Format
Print a single integer $x$ --- the maximum possible score.