P1397 [NOI2013] Matrix Game
Description
Tingting is a kid who likes matrices. One day she wants to use a computer to generate a huge matrix with $n$ rows and $m$ columns (you do not need to worry about how she stores it). The matrix she generates has a magical property: let $F[i, j]$ denote the element at row $i$, column $j$, then $F[i, j]$ satisfies the following recurrence:
$$\begin{aligned}
F[1, 1] &= 1 \\
F[i, j] &=a\times F[i, j-1]+b, &j\neq 1 \\
F[i, 1] &=c\times F[i-1, m]+d, &i\neq 1 \\
\end{aligned}$$
In the recurrence, $a, b, c, d$ are given constants.
Now Tingting wants to know the value of $F[n, m]$. Please help her. Since the final result can be large, you only need to output the remainder of $F[n, m]$ modulo $10^9 + 7$.
Input Format
One line containing six integers $n, m, a, b, c, d$. The meaning is as described above.
Output Format
Output a single integer, the value of $F[n, m]$ modulo $10^9 + 7$.
Explanation/Hint
Explanation for Sample 1.
The matrix in the sample is:
$$\begin{pmatrix}
1 & 4 & 7 & 10 \\
26 & 29 & 32 & 35 \\
76 & 79 & 82 & 85 \\
\end{pmatrix}$$
### Constraints
::cute-table{tuack}
| Test point ID | Constraints |
| :-: | :-: |
| 1 | $1 \le n,m \le 10$; $1 \le a,b,c,d \le 1000$ |
| 2 | $1 \le n,m \le 100$; $1 \le a,b,c,d \le 1000$ |
| 3 | $1 \le n,m \le 10^3$; $1 \le a,b,c,d \le 10^9$ |
| 4 | $1 \le n,m \le 10^3$; $1 \le a,b,c,d \le 10^9$ |
| 5 | $1 \le n,m \le 10^9$; $1 \le a = c \le 10^9$; $1 \le b = d \le 10^9$ |
| 6 | $1 \le n,m \le 10^9$; $a = c = 1$; $1 \le b,d \le 10^9$ |
| 7 | $1 \le n,m,a,b,c,d \le 10^9$ |
| 8 | $1 \le n,m,a,b,c,d \le 10^9$ |
| 9 | $1 \le n,m,a,b,c,d \le 10^9$ |
| 10 | $1 \le n,m,a,b,c,d \le 10^9$ |
| 11 | $1 \le n,m \le 10^{1\,000}$; $a = c = 1$; $1 \le b,d \le 10^9$ |
| 12 | $1 \le n,m \le 10^{1\,000}$; $1 \le a = c \le 10^9$; $1 \le b = d \le 10^9$ |
| 13 | $1 \le n,m \le 10^{1\,000}$; $1 \le a,b,c,d \le 10^9$ |
| 14 | $1 \le n,m \le 10^{1\,000}$; $1 \le a,b,c,d \le 10^9$ |
| 15 | $1 \le n,m \le 10^{20\,000}$; $1 \le a,b,c,d \le 10^9$ |
| 16 | $1 \le n,m \le 10^{20\,000}$; $1 \le a,b,c,d \le 10^9$ |
| 17 | $1 \le n,m \le 10^{1\,000\,000}$; $a = c = 1$; $1 \le b,d \le 10^9$ |
| 18 | $1 \le n,m \le 10^{1\,000\,000}$; $1 \le a = c \le 10^9$; $1 \le b = d \le 10^9$ |
| 19 | $1 \le n,m \le 10^{1\,000\,000}$; $1 \le a,b,c,d \le 10^9$ |
| 20 | $1 \le n,m \le 10^{1\,000\,000}$; $1 \le a,b,c,d \le 10^9$ |
Translated by ChatGPT 5