P14484 [集训队互测 2018] 最小方差生成树

题目背景

试题来源:,向 LOJ 和出题人表示感谢。如果版权方并不希望试题出现在洛谷,可联系洛谷管理组撤下试题。

题目描述

给定一个 $n$ 个点 $m$ 条边的带权图,每条边的边权为 $w_i$ ,有两种询问。 1.求其最小方差生成树。 2.对于每条边,问如果删除它,残余图(包含 $n$ 个点 $m-1$ 条边)的最小方差生成树。 你只需要求出最小的方差值。如果图不连通,输出 $-1$。 一个生成树的方差定义为它的所有边的权值的方差。 对于 $N$ 个变量 $x_1,x_2...x_N$,其方差计算方式为 $\sigma^2 = \frac{\sum_{1\leq i\leq N}(x_i-\mu)^2}{N}$ 其中 $\sigma^2$ 为方差,$\mu$ 为平均值,由于是生成树,所以 $N=n-1$。 你需要将方差乘 $N^2$ 后输出,可以证明这是一个整数。

输入格式

第 $1$ 行包含 $3$ 个整数 $n,m,T$,表示点数,边数和询问类型。 接下来 $m$ 行,每行包含 $3$ 个正整数 $u_i,v_i,w_i$ ,表示第 $i$ 条边连接 $u_i$ 和 $v_i$ ,权值为 $w_i$ ,保证无自环,但可能有重边。

输出格式

当 $T=1$,输出一个数表示答案。 当 $T=2$,输出 $m$ 行,每行一个数表示删除第 $i$ 条边的答案。 如果图不连通,输出-1。

说明/提示

| 子任务 | 分值 | $T$ | $n \le$ | $m \le$ | $C \le$ | |:-:|:-:|:-:|:-:|:-:|:-:| | $1$ | $5$ | $1$ | $m$ | $20$ | $10^6$ | | $2$ | $10$ | ^ | ^ | $200$ | ^ | | $3$ | ^ | ^ | ^ | $1000$ | $10^4$ | | $4$ | ^ | ^ | ^ | ^ | $10^6$ | | $5$ | ^ | ^ | ^ | $10^5$ | $10^9$,且满足特性 1 | | $6$ | $15$ | ^ | ^ | ^ | $10^9$ | | $7$ | $20$ | $2$ | $300$ | ^ | $10^6$ | | $8$ | ^ | ^ | ^ | ^ | $10^{18}$ | 特性 1:第 $i$ 条边连接点 $(i\bmod n)+1$ 和点 $((i+1)\bmod n)+1$,且 $w_i\le w_{i+1}$。