P1916 Hermite Multipoint Evaluation / Multipoint Taylor Expansion
Description
Given a polynomial $F(x)=\displaystyle \sum_{i=0}^{n-1}f_ix^i$ of degree less than $n$, and $m$ pairs $(a_i,k_i)$, satisfying $\displaystyle \sum_{i=1}^m k_i=n$.
For each pair $(a_i,k_i)$, find $F^{(j)}(a_i)$, $\forall\, 0\le j< k_i$, with the answers taken modulo $998244353$.
Here $F^{(i)}(x)$ denotes the $i$-th derivative of $F(x)$.
Input Format
The first line contains two positive integers $n,m$.
The second line contains $n$ integers, namely $f_0,f_1,\cdots ,f_{n-1}$ in order.
Each of the next $m$ lines represents the values of $a_i,k_i$ on the $i$-th line.
Output Format
Output $m$ lines.
The $i$-th line contains $k_i$ numbers, representing $F(a_i),F'(a_i),F^{(2)}(a_i),\cdots ,F^{(k_i-1)}(a_i)$ in order.
All answers are taken modulo $998244353$.
Explanation/Hint
For all testdata, $1\le m\le n\le 64000$, $0\le f_i,a_i