P1951 [Aboi 2077] SL2(Z/NZ)
Background

Description
Count the number of $2 \times 2$ matrices with determinant equal to $1$ modulo $N$.
That is:
$$
\sum_{a=0}^{N-1}\sum_{b=0}^{N-1}\sum_{c=0}^{N-1}\sum_{d=0}^{N-1}[ad-bc\equiv1\ (\bmod\ N)]
$$
Input Format
Multiple test cases. The first line contains a positive integer $T$ indicating the number of test cases.
Then $T$ lines follow, each containing a positive integer $N$, the modulus for that test.
Output Format
For each test case, output the answer modulo $998244353$.
Explanation/Hint
| Subtask ID | $N$ | Score |
| :-----------: | :-----------: | :-----------: |
| 1 | $\le 50$ | 10 |
| 2 | $\le 200$ | 10 |
| 3 | $\le 10^3$ | 20 |
| 4 | $\le 10^6$ | 20 |
| 5 | $\le 10^9$ | 20 |
| 6 | $\le 10^{18}$ | 20 |
For all testdata, $1 \le T \le 10$, $1 \le N \le 10^{18}$.
Translated by ChatGPT 5