P1956 Sum
Description
Given a sequence $a_1, a_2, \cdots, a_n$ and $k, p$.
Let $S_{i,j}=\sum\limits_{k=i}^j a_k$, then:
$$\mathit{Answer}=\min\{S_{i,j}\bmod p\ |\ S_{i,j}\bmod p\ge k\}$$
where $i \le j$, and $\{S_{i,j}\bmod p\ |\ S_{i,j}\bmod p\ge k\}\ne\varnothing$.
Input Format
The first line contains three positive integers $n, k, p$.
The second line contains $n$ positive integers, denoting $a_1, a_2, \cdots, a_n$.
Output Format
Output one positive integer on a single line, which is $\mathit{Answer}$.
Explanation/Hint
### Constraints
For $100\%$ of the testdata, $1\le n\le10^5$, $1\le k,p,a_i\le10^{18}$.
Translated by ChatGPT 5