皇后游戏

题目背景

还记得 NOIP 2012 提高组 Day1 的国王游戏吗?时光飞逝,光阴荏苒,两年过去了。国王游戏早已过时,如今已被皇后游戏取代,请你来解决类似于国王游戏的另一个问题。

题目描述

皇后有 n 位大臣,每位大臣的左右手上面分别写上了一个正整数。恰逢国庆节来临,皇后决定为 n 位大臣颁发奖金,其中第 i 位大臣所获得的奖金数目为第i-1 位大臣所获得奖金数目与前 i 位大臣左手上的数的和的较大值再加上第 i 位大臣右手上的数。 形式化地讲:我们设第 i 位大臣左手上的正整数为 ai,右手上的正整数为 bi,则第 i 位大臣获得的奖金数目为 ci可以表达为: ![](https://cdn.luogu.com.cn/upload/pic/1257.png) 当然,吝啬的皇后并不希望太多的奖金被发给大臣,所以她想请你来重新安排一下队伍的顺序,使得获得奖金最多的大臣,所获奖金数目尽可能的少。 注意:重新安排队伍并不意味着一定要打乱顺序,我们允许不改变任何一位大臣的位置。

输入输出格式

输入格式


第一行包含一个正整数 T,表示测试数据的组数。 接下来 T 个部分,每个部分的第一行包含一个正整数 n,表示大臣的数目。 每个部分接下来 n 行中,每行两个正整数,分别为 ai和 bi,含义如上文所述。

输出格式


共 T 行,每行包含一个整数,表示获得奖金最多的大臣所获得的奖金数目。

输入输出样例

输入样例 #1

1
3
4 1
2 2
1 2

输出样例 #1

8

输入样例 #2

2
5
85 100
95 99
76 87
60 97
79 85
12
9 68
18 45
52 61
39 83
63 67
45 99
52 54
82 100
23 54
99 94
63 100
52 68

输出样例 #2

528
902

说明

按照 1、2、3 这样排列队伍,获得最多奖金的大臣获得奖金的数目为 10; 按照 1、3、2 这样排列队伍,获得最多奖金的大臣获得奖金的数目为 9; 按照 2、1、3 这样排列队伍,获得最多奖金的大臣获得奖金的数目为 9; 按照 2、3、1 这样排列队伍,获得最多奖金的大臣获得奖金的数目为 8; 按照 3、1、2 这样排列队伍,获得最多奖金的大臣获得奖金的数目为 9; 按照 3、2、1 这样排列队伍,获得最多奖金的大臣获得奖金的数目为 8。 当按照 3、2、1 这样排列队伍时,三位大臣左右手的数分别为: (1, 2)、(2, 2)、(4, 1) 第 1 位大臣获得的奖金为 1 + 2 = 3; 第 2 位大臣获得的奖金为 max{3, 3} + 2 = 5; 第 3 为大臣获得的奖金为 max{5, 7} + 1 = 8。 对于全部测试数据满足:$T \le 10$,$1 \le n \le 20\ 000$,$1 \le a_i, b_i \le 10^9$。