P2429 Silly Problem
Description
Find the sum of all natural numbers not exceeding $m$ whose set of prime factors intersects the given set of primes.
Input Format
The first line contains two integers $n, m$.
The second line contains $n$ integers $p_i$, representing the elements of the prime set.
Output Format
Output one integer, the answer modulo $376544743$.
Explanation/Hint
Sample explanation: All qualifying numbers are $3, 5, 6, 9, 10, 12, 15$, and their sum is $60$.
| Test point ID | Constraints |
|:-:|:-:|
| $1 \sim 3$ | $n m \le {10}^7$ |
| $4 \sim 5$ | $n \le 2$,$m \le {10}^9$ |
| $6 \sim 7$ | $n \le 20$,$m \le {10}^8$ |
| $8 \sim 10$ | $n \le 20$,$m \le {10}^9$ |
For the first $30\%$ of the testdata, $1 \le n, m$.
For the remaining $70\%$ of the testdata, $1 \le n \le 20$,$1 \le m \le {10}^9$.
Translated by ChatGPT 5