[SDOI2011]消耗战

题目描述

在一场战争中,战场由 $n$ 个岛屿和 $n-1$ 个桥梁组成,保证每两个岛屿间有且仅有一条路径可达。现在,我军已经侦查到敌军的总部在编号为 $1$ 的岛屿,而且他们已经没有足够多的能源维系战斗,我军胜利在望。已知在其他 $k$ 个岛屿上有丰富能源,为了防止敌军获取能源,我军的任务是炸毁一些桥梁,使得敌军不能到达任何能源丰富的岛屿。由于不同桥梁的材质和结构不同,所以炸毁不同的桥梁有不同的代价,我军希望在满足目标的同时使得总代价最小。 侦查部门还发现,敌军有一台神秘机器。即使我军切断所有能源之后,他们也可以用那台机器。机器产生的效果不仅仅会修复所有我军炸毁的桥梁,而且会重新随机资源分布(但可以保证的是,资源不会分布到 $1$ 号岛屿上)。不过侦查部门还发现了这台机器只能够使用 $m$ 次,所以我们只需要把每次任务完成即可。

输入输出格式

输入格式


第一行一个整数 $n$,表示岛屿数量。 接下来 $n-1$ 行,每行三个整数 $u,v,w$ ,表示 $u$ 号岛屿和 $v$ 号岛屿由一条代价为 $w$ 的桥梁直接相连。 第 $n+1$ 行,一个整数 $m$ ,代表敌方机器能使用的次数。 接下来 $m$ 行,第 $i$ 行一个整数 $k_i$ ,代表第 $i$ 次后,有 $k_i$ 个岛屿资源丰富。接下来 $k_i$ 个整数 $h_1,h_2,..., h_{k_i}$ ,表示资源丰富岛屿的编号。

输出格式


输出共 $m$ 行,表示每次任务的最小代价。

输入输出样例

输入样例 #1

10
1 5 13
1 9 6
2 1 19
2 4 8
2 3 91
5 6 8
7 5 4
7 8 31
10 7 9
3
2 10 6
4 5 7 8 3
3 9 4 6

输出样例 #1

12
32
22

说明

#### 数据规模与约定 - 对于 $10\%$ 的数据,$n\leq 10, m\leq 5$ 。 - 对于 $20\%$ 的数据,$n\leq 100, m\leq 100, 1\leq k_i\leq 10$ 。 - 对于 $40\%$ 的数据,$n\leq 1000, 1\leq k_i\leq 15$ 。 - 对于 $100\%$ 的数据,$2\leq n \leq 2.5\times 10^5, 1\leq m\leq 5\times 10^5, \sum k_i \leq 5\times 10^5, 1\leq k_i< n, h_i\neq 1, 1\leq u,v\leq n, 1\leq w\leq 10^5$ 。