P3861 Splitting
Description
Given an integer $n$, find the number of ways to factor $n$ into a product of pairwise distinct integers each at least $2$. Output the answer modulo $998244353$.
Input Format
The first line contains an integer $T$, the number of test cases.
The next $T$ lines each contain an integer $n$, as described.
Output Format
Output $T$ lines, each containing a single integer, the answer.
Explanation/Hint
In the sample, because
$688 = 2 \times 4 \times 86= 2 \times 8 \times 43= 2 \times 344= 4 \times 172= 8 \times 86= 16 \times 43$
the answer is $6$.
For $10\%$ of the testdata, $n$ is prime.
For $20\%$ of the testdata, $2 \leq n \leq 10^4$.
For $50\%$ of the testdata, $ 2 \leq n \leq 10^7$.
For $100\%$ of the testdata, $ 2 \leq n \leq 10^{12}$.
All testdata satisfy $1 \leq T \leq 5$.
Translated by ChatGPT 5