P3935 Calculating

Description

If the prime factorization of $x$ is $x=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n}$, define $f(x)=(k_1+1)(k_2+1)\cdots (k_n+1)$. Compute $\sum_{i=l}^r f(i)$ modulo $998\,244\,353$.

Input Format

The input contains a single line with two integers, representing $l$ and $r$.

Output Format

Output a single integer on one line representing the answer.

Explanation/Hint

#### Constraints and Conventions | Test point ID | $l$ | $r$ | $r-l$ | | :----------: | :----------: | :----------: | :----------: | | $1\sim 3$ | $1\le l\le 10$ | $1\le r\le 10$ | $r-l=0$ | | $4\sim 7$ | $1\le l\le 50$ | $1\le r\le 50$ | $r-l=0$ | | $8\sim 10$ | $1\le l\le 100$ | $1\le r\le 100$ | $r-l