汽车加油行驶问题
题目描述
给定一个 $N \times N$ 的方形网格,设其左上角为起点◎,坐标$(1,1)$,$X$ 轴向右为正, $Y$ 轴向下为正,每个方格边长为 $1$ ,如图所示。
![](https://cdn.luogu.com.cn/upload/pic/12156.png)
一辆汽车从起点◎出发驶向右下角终点▲,其坐标为 $(N,N)$。
在若干个网格交叉点处,设置了油库,可供汽车在行驶途中加油。汽车在行驶过程中应遵守如下规则:
1. 汽车只能沿网格边行驶,装满油后能行驶 $K$ 条网格边。出发时汽车已装满油,在起点与终点处不设油库。
1. 汽车经过一条网格边时,若其 $X$ 坐标或 $Y$ 坐标减小,则应付费用 $B$ ,否则免付费用。
1. 汽车在行驶过程中遇油库则应加满油并付加油费用 $A$。
1. 在需要时可在网格点处增设油库,并付增设油库费用 $C$(不含加油费用$A$ )。
1. $N,K,A,B,C$ 均为正整数, 且满足约束: $2\leq N\leq 100,2 \leq K \leq 10$。
设计一个算法,求出汽车从起点出发到达终点所付的最小费用。
输入输出格式
输入格式
文件的第一行是 $N,K,A,B,C$ 的值。
第二行起是一个$N\times N$ 的 $0-1$ 方阵,每行 $N$ 个值,至 $N+1$ 行结束。
方阵的第 $i$ 行第 $j$ 列处的值为 $1$ 表示在网格交叉点 $(i,j)$ 处设置了一个油库,为 $0$ 时表示未设油库。各行相邻两个数以空格分隔。
输出格式
程序运行结束时,输出最小费用。
输入输出样例
输入样例 #1
9 3 2 3 6
0 0 0 0 1 0 0 0 0
0 0 0 1 0 1 1 0 0
1 0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 0 1
1 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 1
1 0 0 1 0 0 0 1 0
0 1 0 0 0 0 0 0 0
输出样例 #1
12
说明
$2 \leq n \leq 100,2 \leq k \leq 10$