[HNOI/AHOI2018]道路

题目描述

W 国的交通呈一棵树的形状。W 国一共有 $n-1$ 个城市和 $n$ 个乡村,其中城市从 $1$ 到 $n-1$ 编号,乡村从 $1$ 到 $n$ 编号,且 $1$ 号城市是首都。道路都是单向的,本题中我们只考虑从乡村通往首都的道路网络。 对于每一个城市,恰有一条公路和一条铁路通向这座城市。对于城市 $i$, 通向该城市的道路(公路或铁路)的起点,要么是一个乡村,要么是一个编号比 $i$ 大的城市。没有道路通向任何乡村。除了首都以外,从任何城市或乡村出发只有一条道路;首都没有往外的道路。从任何乡村出发,沿着唯一往外的道路走,总可以到达首都。 W 国的国王小 W 获得了一笔资金,他决定用这笔资金来改善交通。由于资金有限,小 W 只能翻修 $n-1$ 条道路。小 W 决定对每个城市翻修恰好一条通向它的道路,即从公路和铁路中选择一条并进行翻修。小 W 希望从乡村通向城市可以尽可能地便利,于是根据人口调查的数据,小 W 对每个乡村制定了三个参数,编号为 $i$ 的乡村的三个参数是 $a_i$,$b_i$ 和 $c_i$。假设从编号为 $i$ 的乡村走到首都一共需要经过 $x$ 条未翻修的公路与 $y$ 条未翻修的铁路,那么该乡村的不便利值为: $$c_i \cdot (a_i + x) \cdot (b_i + y)$$ 在给定的翻修方案下,每个乡村的不便利值相加的和为该翻修方案的不便利值。 翻修 $n-1$ 条道路有很多方案,其中不便利值最小的方案称为最优翻修方案,小 W 自然希望找到最优翻修方案,请你帮助他求出这个最优翻修方案的不便利值。

输入输出格式

输入格式


第一行为正整数 $n$。 接下来 $n - 1$ 行,每行描述一个城市。其中第 $i$ 行包含两个数 $s_i,t_i$。$s_i$ 表示通向第 $i$ 座城市的公路的起点,$t_i$ 表示通向第 $i$ 座城市的铁路的起点。如果$s_i>0$,那么存在一条从第 $s_i$ 座城市通往第$i$座城市的公路,否则存在一条从第 $-s_i$ 个乡村通往第 $i$ 座城市的公路;$t_i$ 类似地,如果 $t_i > 0$,那么存在一条从第 $t_i$ 座城市通往第 $i$ 座城市的铁路,否则存在一条从第 $-t_i$ 个乡村通往第 $i$ 座城市的铁路。 接下来 $n$ 行,每行描述一个乡村。其中第 $i$ 行包含三个数 $a_i,b_i,c_i$,其意义如题面所示。

输出格式


输出一行一个整数,表示最优翻修方案的不便利值。

输入输出样例

输入样例 #1

6 
2 3 
4 5 
-1 -2 
-3 -4 
-5 -6 
1 2 3 
1 3 2 
2 1 3 
2 3 1 
3 1 2 
3 2 1

输出样例 #1

54

输入样例 #2

9 
2 -2 
3 -3 
4 -4 
5 -5 
6 -6 
7 -7 
8 -8 
-1 -9 
1 60 1 
1 60 1 
1 60 1 
1 60 1 
1 60 1 
1 60 1 
1 60 1 
1 60 1 
1 60 1

输出样例 #2

548

输入样例 #3

12 
2 4 
5 3 
-7 10 
11 9 
-1 6 
8 7 
-6 -10 
-9 -4
-12 -5 
-2 -3 
-8 -11 
53 26 491 
24 58 190 
17 37 356 
15 51 997 
30 19 398 
3 45 27 
52 55 838 
16 18 931 
58 24 212 
43 25 198 
54 15 172 
34 5 524

输出样例 #3

5744902
 

说明

【样例解释 1】 ![](https://cdn.luogu.com.cn/upload/pic/17506.png) 如图所示,我们分别用蓝色、黄色节点表示城市、乡村;用绿色、红色箭头分别表示 公路、铁路;用加粗箭头表示翻修的道路。 一种不便利值等于54的方法是:翻修通往城市2和城市5的铁路,以及通往其他城市的 公路。用→和⇒表示公路和铁路,用∗→和∗⇒表示翻修的公路和铁路,那么: 编号为1的乡村到达首都的路线为:-1 ∗→ 3 ⇒ 1,经过0条未翻修公路和1条未翻修铁 路,代价为3 × (1 + 0) × (2 + 1) = 9; 编号为2的乡村到达首都的路线为:-2 ⇒ 3 ⇒ 1,经过0条未翻修公路和2条未翻修铁 路,代价为2 × (1 + 0) × (3 + 2) = 10; 编号为3的乡村到达首都的路线为:-3 ∗→ 4 → 2 ∗→ 1,经过1条未翻修公路和0条未 翻修铁路,代价为3 × (2 + 1) × (1 + 0) = 9; 编号为4的乡村到达首都的路线为:-4 ⇒ 4 → 2 ∗→ 1,经过1条未翻修公路和1条未翻 修铁路,代价为1 × (2 + 1) × (3 + 1) = 12; 编号为5的乡村到达首都的路线为:-5 → 5 ∗⇒ 2 ∗→ 1,经过1条未翻修公路和0条未 翻修铁路,代价为2 × (3 + 1) × (1 + 0) = 8; 编号为6的乡村到达首都的路线为:-6 ∗⇒ 5 ∗⇒ 2 ∗→ 1,经过0条未翻修公路和0条未翻修铁路,代价为1 × (3 + 0) × (2 + 0) = 6; 总的不便利值为9 + 10 + 9 + 12 + 8 + 6 = 54。可以证明这是本数据的最优解。 【样例解释 2】 在这个样例中,显然应该翻修所有公路。 【数据范围】 一共20组数据,编号为1 ∼ 20。 对于编号$\le 4$的数据,$n \le 20$; 对于编号为5 ∼ 8的数据,$a_i,b_i,c_i \le 5$,$n \le 50$; 对于编号为9 ∼ 12的数据,$n \le 2000$; 对于所有的数据,$n \le 20000$,$1 \le a_i,b_i \le 60$,$1 \le c_i \le 10^9$,$s_i,t_i$是$[-n,-1] \cup (i,n - 1]$内的整数,任意乡村可以通过不超过40条道路到达首都。