P5177 Check-in.
Background
Solution: https://blog.csdn.net/kkkksc03/article/details/85008142
Description
Compute $\sum_{i=1}^n \sum_{j=1}^n i \ xor \ j \in [\min(i,j),\max(i,j)]$.
Since the answer may be very large, output the value modulo $10^9+7$.
Input Format
The first line contains an integer $T$, the number of test cases.
The next $T$ lines each contain one integer $n$.
Output Format
For each test case, output the answer.
Explanation/Hint
Explanation for the first sample:
There are $20$ pairs $(i,j)$ that satisfy the condition.
```
i=1 j=3 i^j=2
i=1 j=5 i^j=4
i=1 j=7 i^j=6
i=1 j=9 i^j=8
i=2 j=6 i^j=4
i=2 j=7 i^j=5
i=2 j=10 i^j=8
i=3 j=1 i^j=2
i=3 j=6 i^j=5
i=3 j=7 i^j=4
i=3 j=10 i^j=9
i=5 j=1 i^j=4
i=6 j=2 i^j=4
i=6 j=3 i^j=5
i=7 j=1 i^j=6
i=7 j=2 i^j=5
i=7 j=3 i^j=4
i=9 j=1 i^j=8
i=10 j=2 i^j=8
i=10 j=3 i^j=9
```
Constraints:
For $27\%$ of the testdata, $T\le 5$, $n \le 1000$.
For $54\%$ of the testdata, $T\le 20$, $n \le 5 \times 10^5$.
For $90\%$ of the testdata, $T\le 10^5$, $n \le 10^{18}$.
For the last test point, $T=3\times 10^6 \ ,\ n\le 10^{18}$.
Translated by ChatGPT 5