P5349 Power
Background
Came to the School of Mathematics to do labor.
Description
$$\text{Find}\ \sum_{n=0}^{\infty}f(n)\ r^n\ ,\ f(n)\text{ is a polynomial},\ r\text{ is a rational number in }(0,1)$$
If the simplest fraction form of the answer is $\frac{p}{q}$, you only need to output the value of $p\times q^{-1}\ \mathrm{mod}\ 998244353$.
Input Format
The first line contains two integers $m, r$. $m$ is the degree of the polynomial.
The second line contains $m+1$ integers. The $i$-th integer is the coefficient $a_{i-1}$ of $x^{i-1}$.
Output Format
Only one line with one number, which is the answer.
Explanation/Hint
For $10\%$ of the testdata, $m\le 5$.
For $40\%$ of the testdata, $m\le 2000$.
For $100\%$ of the testdata, $m\le 10^5\ ,\ a_i\in [0,998244353)$, and it is guaranteed that $\ a_{m}\neq 0$.
**Bundled Tests**
----
**Sample 1 Explanation:**
$499122177\equiv \frac{1}{2}\ (\mathrm{mod}\ 998244353)$.
$\sum_{n=0}^{\infty}n\ (\frac{1}{2})^n=2$.
-----
**Sample 2 Explanation:**
$748683265\equiv \frac{1}{4}\ (\mathrm{mod}\ 998244353)$.
$\sum_{n=0}^{\infty}n^2\ (\frac{1}{4})^n=\frac{20}{27}$.
-----
**Sample 3 Explanation:**
$713031681\equiv \frac{2}{7}\ (\mathrm{mod}\ 998244353)$.
$\sum_{n=0}^{\infty}(2n^3+23n^2+5n+7)\ (\frac{2}{7})^n=\frac{25417}{625}$.
Translated by ChatGPT 5