[USACO19DEC] Greedy Pie Eaters P
题目背景
Farmer John has $M$ cows, conveniently labeled $1 \ldots M$, who enjoy the occasional change of pace
from eating grass. As a treat for the cows, Farmer John has baked $N$ pies ($1 \leq N \leq 300$), labeled
$1 \ldots N$. Cow $i$ enjoys pies with labels in the range $[l_i, r_i]$ (from $l_i$ to $r_i$ inclusive),
and no two cows enjoy the exact same range of pies. Cow $i$ also has a weight, $w_i$, which
is an integer in the range $1 \ldots 10^6$.
Farmer John may choose a sequence of cows $c_1,c_2,\ldots, c_K,$ after which the
selected cows will take turns eating in that order. Unfortunately, the cows
don't know how to share! When it is cow $c_i$'s turn to eat, she will consume
all of the pies that she enjoys --- that is, all remaining pies in the interval
$[l_{c_i},r_{c_i}]$. Farmer John would like to avoid the awkward situation
occurring when it is a cows turn to eat but all of the pies she enjoys have already been
consumed. Therefore, he wants you to compute the largest possible total weight
($w_{c_1}+w_{c_2}+\ldots+w_{c_K}$) of a sequence $c_1,c_2,\ldots, c_K$ for which each cow in the
sequence eats at least one pie.
题目描述
Farmer John 有 $M$ 头奶牛,为了方便,编号为 $1,\dots,M$。这些奶牛平时都吃青草,但是喜欢偶尔换换口味。Farmer John 一天烤了 $N$ 个派请奶牛吃,这 $N$ 个派编号为 $1,\dots,N$。第 $i$ 头奶牛喜欢吃编号在 $\left[ l_i,r_i \right]$ 中的派(包括两端),并且没有两头奶牛喜欢吃相同范围的派。第 $i$ 头奶牛有一个体重 $w_i$,这是一个在 $\left[ 1,10^6 \right]$ 中的正整数。
Farmer John 可以选择一个奶牛序列 $c_1,c_2,\dots,c_K$,并让这些奶牛按这个顺序轮流吃派。不幸的是,这些奶牛不知道分享!当奶牛 吃派时,她会把她喜欢吃的派都吃掉——也就是说,她会吃掉编号在 $[l_{c_i},r_{c_i}]$ 中所有剩余的派。Farmer John 想要避免当轮到一头奶牛吃派时,她所有喜欢的派在之前都被吃掉了这样尴尬的情况。因此,他想让你计算,要使奶牛按 $c_1,c_2,\dots,c_K$ 的顺序吃派,轮到这头奶牛时她喜欢的派至少剩余一个的情况下,这些奶牛的最大可能体重($w_{c_1}+w_{c_2}+\ldots+w_{c_K}$)是多少。
输入输出格式
输入格式
第一行包含两个正整数 $N,M$;
接下来 $M$ 行,每行三个正整数 $w_i,l_i,r_i$。
输出格式
输出对于一个合法的序列,最大可能的体重值。
输入输出样例
输入样例 #1
2 2
100 1 2
100 1 1
输出样例 #1
200
说明
#### 样例解释
在这个样例中,如果奶牛 $1$ 先吃,那么奶牛 $2$ 就吃不到派了。然而,先让奶牛 $2$ 吃,然后奶牛 $1$ 只吃编号为 $2$ 的派,仍可以满足条件。
对于全部数据,$1 \le N \le 300,1 \le M \le \dfrac{N(N-1)}{2},1 \le l_i,r_i \le N,1 \le w_i \le 10^6$。
#### 数据范围
对于测试点 $2-5$,满足 $N \le 50,M \le 20$;
对于测试点 $6-9$,满足 $N \le 50$。
USACO 2019 December 铂金组T1