P5851 [USACO19DEC] Greedy Pie Eaters P

题目描述

Farmer John 有 $M$ 头奶牛,为了方便,编号为 $1,\dots,M$。这些奶牛平时都吃青草,但是喜欢偶尔换换口味。Farmer John 一天烤了 $N$ 个派请奶牛吃,这 $N$ 个派编号为 $1,\dots,N$。第 $i$ 头奶牛喜欢吃编号在 $\left[ l_i,r_i \right]$ 中的派(包括两端),并且没有两头奶牛喜欢吃相同范围的派。第 $i$ 头奶牛有一个体重 $w_i$,这是一个在 $\left[ 1,10^6 \right]$ 中的正整数。 Farmer John 可以选择一个奶牛序列 $c_1,c_2,\dots,c_K$,并让这些奶牛按这个顺序轮流吃派。不幸的是,这些奶牛不知道分享!当奶牛 吃派时,她会把她喜欢吃的派都吃掉——也就是说,她会吃掉编号在 $[l_{c_i},r_{c_i}]$ 中所有剩余的派。Farmer John 想要避免当轮到一头奶牛吃派时,她所有喜欢的派在之前都被吃掉了这样尴尬的情况。因此,他想让你计算,要使奶牛按 $c_1,c_2,\dots,c_K$ 的顺序吃派,轮到这头奶牛时她喜欢的派至少剩余一个的情况下,这些奶牛的最大可能体重($w_{c_1}+w_{c_2}+\ldots+w_{c_K}$)是多少。

输入格式

第一行包含两个正整数 $N,M$; 接下来 $M$ 行,每行三个正整数 $w_i,l_i,r_i$。

输出格式

输出对于一个合法的序列,最大可能的体重值。

说明/提示

#### 样例解释 在这个样例中,如果奶牛 $1$ 先吃,那么奶牛 $2$ 就吃不到派了。然而,先让奶牛 $2$ 吃,然后奶牛 $1$ 只吃编号为 $2$ 的派,仍可以满足条件。 #### 数据范围 对于测试点 $2-5$,满足 $N \le 50,M \le 20$; 对于测试点 $6-9$,满足 $N \le 50$。 对于全部数据,$1 \le N \le 300,1 \le M \le \dfrac{N(N-1)}{2},1 \le l_i,r_i \le N,1 \le w_i \le 10^6$。 USACO 2019 December 铂金组T1