P6052 [RC-02] yltx Prime Pair
Background
yltx has once again come up with a problem that they cannot solve...
Description
yltx defines that if a **prime** pair $(x,y)$ satisfies that $x\times y-3\times (x-y)$ is prime, then it is called a yltx pair.
He gives you $T$ pairs $(x,y)$. Please check whether they are yltx pairs.
The data is given in the form of a seed $(x_0,y_0)$.
Perform $T$ times of $x_0\leftarrow (7x_0+13)\ \mathrm{xor}\ (x_0\div 13-7)$. For the value obtained in the $i$-th execution, first take modulo $10^4$, add $10^4$, take modulo $10^4$ again, then add $1$, and you get the $x$ of the $i$-th test case. Here division means integer division, and $x_0$ is treated as a 32-bit signed integer.
Use the same method to get $y$.
Data generation template:
```cpp
#include
using namespace std;
int T,x_0,y_0;
int main() {
scanf("%d%d%d",&T,&x_0,&y_0);
while(T--){
x_0=((7*x_0+13)^(x_0/13-7));
y_0=((7*y_0+13)^(y_0/13-7));
int x=(x_0%10000+10000)%10000+1,y=(y_0%10000+10000)%10000+1;
//x,y即为一组(x,y)。
}
return 0;
}
```
Input Format
The first line contains three integers $T,x_0,y_0$.
Output Format
$1$ line. Output how many pairs are yltx pairs.
Explanation/Hint
The Constraints for each test point are as follows:
| Test Point | T | Subtask |
| :---: | :---: | :---: |
| 1 | $\le10$ | 1 |
| 2 | $\le20$ | 1 |
| 3 | $\le50$ | 1 |
| 4 | $\le100$ | 1 |
| 5 | $\le500$ | 1 |
| 6 | $\le1000$ | 1 |
| 7 | $\le5000$ | 2 |
| 8 | $\le10^4$ | 2 |
| 9 | $\le5\times10^4$ | 2 |
| 10 | $\le4\times10^5$ | 2 |
| 11 | $\le10^6$ | 2 |
| 12 | $\le5\times10^6$ | 2 |
| 13 | $\le4\times10^7$ | 3 |
| 14 | $\le4\times10^7$ | 3 |
| 15 | $\le4\times10^7$ | 3 |
| 16 | $\le4\times10^7$ | 3 |
| 17 | $\le4\times10^7$ | 3 |
| 18 | $\le4\times10^7$ | 3 |
| 19 | $\le4\times10^7$ | 3 |
| 20 | $\le4\times10^7$ | 3 |
Each Subtask is tested as a bundled group of test points.
This problem provides testdata for download, but we hope you will use the data to do the right thing.
Translated by ChatGPT 5