P6217 Simple Number Theory Problem
Description
You are given a sequence $a$ of length $n$. There are $q$ queries asking for the value of $\prod_{i=l}^r \operatorname{lcm}(a_i,x)$.
The answer should be taken modulo $10 ^ 9 + 7$.
Input Format
The first line contains two integers $n,q$.
The second line contains $n$ integers $a_i$.
The next $q$ lines each contain three integers $l,r,x$.
Output Format
Output $q$ lines, one answer per line.
Explanation/Hint
**[Sample Explanation]**
For the second query in Sample 1, the answer is:
$\quad \operatorname{lcm}(12,3) \times \operatorname{lcm}(8,3) \times \operatorname{lcm}(9,3)$
$= 12 \times 24 \times 9$
$= 2592$.
------------------
**[Constraints]**
**This problem uses bundled testdata.**
- For $100 \%$ of the testdata: $1 \le l \le r \le n$, $1 \le n,q,a_i,x \le 2 \times 10 ^ 5$.
- **Detailed constraints:**
| Subtask ID | $n,q ,a_i,x\le $ | Special Property | Score |
| :--------: | :---------------: | :---------------------------------: | :---: |
| $1$ | $100$ | None | $10$ |
| $2$ | $2 \times 10 ^ 5$ | $a_i,x$ are primes, and any $a_i \neq x$ | $10$ |
| $3$ | $5 \times 10 ^ 4$ | $a_i$ are primes | $15$ |
| $4$ | $5 \times 10 ^ 4$ | $μ(a_i) \neq 0$ | $15$ |
| $5$ | $5 \times 10 ^ 4$ | None | $25$ |
| $6$ | $2 \times 10 ^ 5$ | None | $25$ |
-------------------------
**[Notes]**
- Sample 2 satisfies the special property of Subtask 2, Sample 3 satisfies the special property of Subtask 3, and Sample 4 satisfies the special property of Subtask 4.
- $μ(x)$ is the Möbius function, defined as follows:
Let $x = {p_1} ^ {q_1} \times {p_2} ^ {q_2} \times ... \times {p_k} ^ {q_k}$.
$μ(x) =\begin{cases}1&x=1\\(-1) ^ k&q_1,q_2...q_k \le 1\\0&\text{otherwise}\end{cases}$.
Note: $p_i$ are primes, and $q_i$ are positive integers.
Translated by ChatGPT 5