P6308 "Wdsr-1" Foolish Structure.

Background

As everyone knows, Cirno is a fool.

Description

Cirno wants to maintain an integer sequence $a$ of length $n$, with all initial values equal to $0$. Now Cirno wants to perform $q$ operations. Each time, she chooses a segment $[s,s+l-1]$ in the sequence and gives two numbers $w,k$, so that for all $i \in [1,l]$, $a_{s+i-1}$ is increased by $w\times i^k$. Cirno does not want $k$ to be too large, so she gives an integer $m$ such that $0\le k\le m$. To avoid confusing the simple-minded Cirno, you only need to output, after all operations are done in order, the result of each number in the sequence modulo $2^{64}$ (i.e. natural overflow of `unsigned long long`). To help you better understand the statement, here is some pseudocode: $$\def\b#1{\textbf{ #1 }}\def\t#1{\text{ #1 }}\def\s{\quad} \def\l{\underline{\kern{300pt}}\cr[-10pt]} \def\r{\overline{\underline{\kern{300pt}}}} \begin{aligned} &\r\cr&\b{Algorithm:}\t{An easy structure}\cr[-13pt]&\l\cr &\begin{aligned} \t{1.}&\b{input}n,m,q \cr \t{2.}&\b{for}i=1\b{to} q \b{do} \cr \t{3.}&\s\b{input} s,l,w,k \cr \t{4.}&\s\b{for} j=1 \b{to} l \b{do}\cr \t{5.}&\s\s a[s+j-1] \gets a[s+j-1]+w\times \t{pow}(j,k) \cr \t{6.}&\s\b{end}\cr \t{7.}&\b{end}\cr \t{8.}&\b{for} i=1 \b{to} n \b{do}\cr \t{9.}&\s\b{output} a[i]\cr \t{10.}&\b{end}\cr \end{aligned}\cr[-12pt] &\r\end{aligned} %Made by @离散小波变换° . %You can find his contributions by searching "JoesSR". $$ Here, the meaning of $\rm pow(a,b)$ is $a^b$.

Input Format

Please call `input(n,m,q,S,L,W,K)` in the code below to read $n,m,q,s_i,l_i,w_i,k_i$. Indices **start from 1**. The meanings of $s,l,w,k$ are the same as in the description.

Output Format

Please call `output(n,R)` in the code below to output. Here, $R_i$ is the sequence after all operations, and indices **start from 1**.

Explanation/Hint

#### Explanation for Sample 1 The generated testdata is: ```plain 10 0 5 7 1 1558211206 0 1 3 401324017 0 4 5 235225636 0 6 4 2137131141 0 1 2 3791175968 0 ``` Its result is: ```plain 4192499985 4192499985 401324017 235225636 235225636 2372356777 3930567983 2372356777 2137131141 0 ``` --- #### Data Generation & Data Output ```cpp typedef unsigned long long u64; typedef unsigned int u32; u32 MT[624],idx; void _init(u32 seed){ MT[0]=seed; idx=0; for(int i=1;i>30)+i)); } void _gene(){ for(int i=0;i>1); if(x&2)MT[i]^=0x9908b0df; } } u32 _calc(){ if(!idx) _gene(); int x=MT[idx]; x^=x>>11,x^=(x