P6459 [COCI 2006/2007 #5] TENIS

题目描述

两个球员正常进行一次网球比赛,比赛由 $n$ 轮组成,每一轮都会进行 $1\sim 5$ 次对决不等。每次对决的结果用 `A:B` 表示,其中 `A` 为第一个球员的获胜场次,`B` 为第二个球员的获胜场次。 比赛有以下规则: - 如果其中一个球员获胜了 $6$ 个球及以上,并且他比另一个球员至少多获胜两个球,那么这一次对决他就胜利了; - 此外,如果第一、二次对决的结果都是 `6:6` 那么将会进行一轮决赛来准确的得出一位球员获胜; - 当有一名球员获胜两次对决时,他就是这轮比赛的胜者,且这轮比赛结束。 如果一轮比赛按照上述规则顺利进行,并且最终得以结束,那么我们就认为这轮是有效的。 但是,有一名特殊的球员——`federer`,他不会输掉任意一次对决。(因为我们知道他来自外太空……) 你需要检验这 $n$ 轮比赛是否有效。

输入格式

输入第一行两个字符串,用空格隔开,表示两名参赛的选手。 第二行为一个整数 $n$,表示一共进行了 $n$ 轮比赛。 接下来的 $n$ 行,每行有 $1\sim 5$ 个形如 `A:B` 的对决结果。保证 `A` `B` 是介于 $0\sim 99$ 之间的整数。

输出格式

输出共 $n$ 行。 对于每轮比赛,输出 `da` 表示结果有效或输出 `ne` 表示结果无效。

说明/提示

#### 数据规模与约定 对于 $100\%$ 的数据,保证 $1\le n\le 50$。 #### 说明 **题目译自 [COCI2006-2007](https://hsin.hr/coci/archive/2006_2007/) [CONTEST #5](https://hsin.hr/coci/archive/2006_2007/contest5_tasks.pdf) *T3 TENIS***。