[CSP-J2020] 优秀的拆分

题目描述

一般来说,一个正整数可以拆分成若干个正整数的和。 例如,$1=1$,$10=1+2+3+4$ 等。对于正整数 $n$ 的一种特定拆分,我们称它为“优秀的”,当且仅当在这种拆分下,$n$ 被分解为了若干个**不同**的 $2$ 的**正整数**次幂。注意,一个数 $x$ 能被表示成 $2$ 的正整数次幂,当且仅当 $x$ 能通过正整数个 $2$ 相乘在一起得到。 例如,$10=8+2=2^3+2^1$ 是一个优秀的拆分。但是,$7=4+2+1=2^2+2^1+2^0$ 就不是一个优秀的拆分,因为 $1$ 不是 $2$ 的正整数次幂。 现在,给定正整数 $n$,你需要判断这个数的所有拆分中,是否存在优秀的拆分。若存在,请你给出具体的拆分方案。

输入输出格式

输入格式


输入只有一行,一个整数 $n$,代表需要判断的数。

输出格式


如果这个数的所有拆分中,存在优秀的拆分。那么,你需要从大到小输出这个拆分中的每一个数,相邻两个数之间用一个空格隔开。可以证明,在规定了拆分数字的顺序后,该拆分方案是唯一的。 若不存在优秀的拆分,输出 `-1`。

输入输出样例

输入样例 #1

6

输出样例 #1

4 2

输入样例 #2

7

输出样例 #2

-1

说明

### 样例 1 解释 $6=4+2=2^2+2^1$ 是一个优秀的拆分。注意,$6=2+2+2$ 不是一个优秀的拆分,因为拆分成的 $3$ 个数不满足每个数互不相同。 --- ### 数据规模与约定 - 对于 $20\%$ 的数据,$n \le 10$。 - 对于另外 $20\%$ 的数据,保证 $n$ 为奇数。 - 对于另外 $20\%$ 的数据,保证 $n$ 为 $2$ 的正整数次幂。 - 对于 $80\%$ 的数据,$n \le 1024$。 - 对于 $100\%$ 的数据,$1 \le n \le 1 \times 10^7$。