[WC2021] 表达式求值

题目描述

定义二元操作符 `<`:对于两个长度都为 $n$ 的数组 $A, B$(下标从 $1$ 到 $n$),$A$`<`$B$ 的结果也是一个长度为 $n$ 的数组,记为 $C$。则有 $C[i] = \min(A[i], B[i])$($1 \le i \le n$)。 定义二元操作符 `>`:对于两个长度都为 $n$ 的数组 $A, B$(下标从 $1$ 到 $n$),$A$`>`$B$ 的结果也是一个长度为 $n$ 的数组,记为 $C$。则有 $C[i] = \max(A[i], B[i])$($1 \le i \le n$)。 现在有 $m$($1 \le m \le 10$)个长度均为 $n$ 的整数数组 $A_0, A_1, \ldots , A_{m-1}$。给定一个待计算的表达式 $E$,其满足 $E$ 中出现的每个操作数都是 $A_0, A_1, \ldots , A_{m-1}$ 其中之一,且 $E$ 中只包含 `<` 和 `>` 两种操作符(`<` 和 `>` 的运算优先级相同),因此该表达式的结果值也将是一个长度为 $n$ 的数组。 特殊地,表达式 $E$ 中还可能出现操作符 `?`,它表示该运算符可能是 `<` 也可能是 `>`。因此若表达式中有 $t$ 个 `?`,则该表达式可生成 $2^t$ 个可求确定值的表达式,从而可以得到 $2^t$ 个结果值,你的任务就是求出这 $2^t$ 个结果值(每个结果都是一个数组)中所有的元素的和。你只需要给出所有元素之和对 ${10}^9 + 7$ 取模后的值。

输入输出格式

输入格式


第一行两个整数 $n, m$,分别表示数组长度与数组个数。 第 $2 \sim m + 1$ 行每行 $n$ 个用空格分隔的整数,第 $i$ 行第 $j$ 个元素代表 $A_{i-2}[j]$($2 \le i \le m + 1$,$1 \le j \le n$)。 最后一行一个字符串 $S$,表示表达式 $E$。$S$ 中只包含字符 `0` 到 `9`、`(`、`)`、`<`、`>`、`?`,数字字符表示操作数的下标,例如字符 `2` 表示表达式中的操作数为 $A_2$。

输出格式


仅一行一个整数,表示所有 $2^t$ 个表达式的结果,它们的元素之和模 ${10}^9 + 7$ 的值。

输入输出样例

输入样例 #1

2 3
3 1
2 2
2 3
1>2?0

输出样例 #1

9

输入样例 #2

3 3
4 3 2
2 3 1
2 3 3
1?0>2?0

输出样例 #2

36

输入样例 #3

5 3
354 321 414 205 257
458 996 554 635 730
681 374 903 966 349
2<0>2<0>(1>2)>(0<0)

输出样例 #3

4276

输入样例 #4

见附件中的 expr/expr4.in

输出样例 #4

见附件中的 expr/expr4.ans

说明

**【样例解释 #1】** 表达式 $E$ 生成的算式有: 1. $A_1$`>`$A_2$`<`$A_0$,其结果为 $[2, 1]$。 2. $A_1$`>`$A_2$`>`$A_0$,其结果为 $[3, 3]$。 答案为 $2 + 1 + 3 + 3 = 9$。 **【数据范围】** 对于所有测试点:$1 \le n \le 5 \times {10}^4$,$1 \le m \le 10$,$|S| \le 5 \times {10}^4$,$1 \le A_i[j] \le {10}^9$。 每个测试点的具体限制见下表: | 测试点编号 | $n \le$ | $\vert E \vert \le$ | 特殊限制 | |:-:|:-:|:-:|:-:| | $1 \sim 4$ | $5$ | $10$ | $S$ 中不包含左右括号和问号 | | $5 \sim 7$ | $10$ | $100$ | $S$ 中不包含问号 | | $8 \sim 9$ | $2$ | $5000$ | $S$ 中不包含左右括号 | | $10 \sim 11$ | $2$ | $5000$ | 无 | | $12 \sim 14$ | $5000$ | $5000$ | $S$ 中不包含问号 | | $15 \sim 17$ | $5 \times {10}^4$ | $5 \times {10}^4$ | $S$ 中不包含问号 | | $18 \sim 20$ | $5 \times {10}^4$ | $5 \times {10}^4$ | 无 |