[USACO23JAN] Find and Replace G
题意翻译
#### 【题目描述】
你有一个字符串 $S$,最开始里面只有一个字符 $\text{a}$,之后你要对这个字符串进行若干次操作,每次将其中每一个字符 $c$ 替换成某个字符串 $s$(例如对于字符串 $\text{ball}$,将其中的 $\text{l}$ 替换为 $\text{na}$ 后将会变为 $\text{banana}$)。现在给定 $l,r$,你需要输出 $S_{l\ldots r}$(也就是 $S$ 的第 $l$ 个字符到第 $r$ 个字符对应的子串)是什么。
#### 【输入格式】
第一行三个整数,分别表示 $l,r$ 和操作次数。
接下来每一行一个字符 $c$ 和一个字符串 $s$,意义见题目描述。
#### 【输出格式】
一行,表示对应的子串。
#### 【数据范围】
$l,r\le\min(\left | S \right |,10^{18})$;
$r-l+1\le2\times10^5$;
$\sum\left | s \right | \le 2\times 10^5$。
所有的字符串都只包含小写字母 $\text{a}-\text{z}$。
其中对于测试点 $2-7$,满足:
$r-l+1\le2000$,$\sum\left | s \right | \le 2000$。
题目描述
Bessie is using the latest and greatest innovation in text-editing software, miV! Its powerful find-and-replace feature allows her to find all occurrences of a lowercase English letter $c$ and replace each with a nonempty string of lowercase letters $s$. For example, given the string `ball`, if Bessie selects $c$ to be `l` and $s$ to be `na`, the given string transforms into `banana`.
Bessie starts with the string `a` and transforms it using a number of these find-and-replace operations, resulting in a final string $S$. Since $S$ could be massive, she wants to know, given $l$ and $r$ with $1 \le l \le r \min(|S|,10^{18})$, what $S_{l\cdots r}$ (the substring of $S$ from the $l$-th to the $r$-th character inclusive) is.
It is guaranteed that the sum of $|s|$
over all operations is at most $2 \cdot 10^5$, and that $r−l+1 \le 2 \cdot 10^5$.
输入输出格式
输入格式
The first line contains $l, r$, and the number of operations.
Each subsequent line describes one operation and contains $c$ and $s$ for that operation. All characters are in the range `a` through `z`.
输出格式
Output the string $S_{l \cdots r}$ on a single line.
输入输出样例
输入样例 #1
3 8 4
a ab
a bc
c de
b bbb
输出样例 #1
bdebbb
说明
### Explanation for Sample 1
The string is transformed as follows:
$$ \texttt{a} \rightarrow \texttt{ab} \rightarrow\texttt{bcb}\rightarrow \texttt{bdeb}\rightarrow \texttt{bbbdebbb} $$
### Scoring
- Inputs $2-7$: $\sum |s|,r−l+1 \le 2000$
- Inputs $8-15$: No additional constraints.