P9560 [SDCPC 2023] Math Problem
题目描述
给定两个正整数 $n$ 和 $k$,您可以进行以下两种操作任意次(包括零次):
- 选择一个整数 $x$ 满足 $0 \leq x < k$,将 $n$ 变为 $k\cdot n+x$。该操作每次花费 $a$ 枚金币。每次选择的整数 $x$ 可以不同。
- 将 $n$ 变为 $\lfloor \frac{n}{k} \rfloor$。该操作每次花费 $b$ 枚金币。其中 $\lfloor \frac{n}{k} \rfloor$ 表示小于等于 $\frac{n}{k}$ 的最大整数。
给定正整数 $m$,求将 $n$ 变为 $m$ 的倍数最少需要花费几枚金币。请注意:$0$ 是任何正整数的倍数。
输入格式
有多组测试数据。第一行输入一个整数 $T$($1\leq T\leq 10^5$)表示测试数据组数。对于每组测试数据:
第一行输入五个正整数 $n$,$k$,$m$,$a$,$b$($1\leq n\leq 10^{18}$,$1\leq k, m, a, b\leq 10^9$)。
输出格式
每组数据输出一行一个整数,代表将 $n$ 变为 $m$ 的倍数最少需要花费几枚金币。如果无法完成该目标,输出 $-1$。
**【样例解释】**
对于第一组样例数据,一开始 $n=101$,最优操作如下:
- 首先进行一次第二种操作,将 $n$ 变为 $\lfloor \frac{n}{4} \rfloor=25$,花费 $5$ 枚金币。
- 接下来进行一次第一种操作,选择 $x = 3$,将 $n$ 变为 $4\cdot n+3=103$,花费 $3$ 枚金币。
- 接下来进行一次第一种操作,选择 $x = 2$,将 $n$ 变为 $4\cdot n+2=414$,花费 $3$ 枚金币。
- 此时 $414=2 \times 207$,满足 $n$ 是 $m$ 的倍数。共花费 $5+3+3=11$ 枚金币。
对于第二组样例数据,进行两次第二种操作将 $n$ 变为 $0$。共花费 $1 + 1 = 2$ 枚金币。
对于第三组样例数据,因为 $n = 114 = 6 \times 19$ 已经是 $m$ 的倍数,因此无需进行任何操作。共花费 $0$ 枚金币。
说明/提示
For the first sample test case, initially $n=101$. The optimal steps are shown as follows:
- Firstly, perform the second type of operation once. Change $n$ into $\lfloor \frac{n}{4} \rfloor=25$. This step costs $5$ coins.
- Then, perform the first type of operation once. Choose $x = 3$ and change $n$ into $4\cdot n+3=103$. This step costs $3$ coins.
- Then, perform the first type of operation once. Choose $x = 2$ and change $n$ into $4\cdot n+2=414$. This step costs $3$ coins.
- As $414=2 \times 207$, $n$ is a multiple of $m$. The total cost is $5+3+3=11$ coins.
For the second sample test case, perform the second type of operation twice will change $n$ into $0$. The total cost is $1 + 1 = 2$ coins.
For the third sample test case, as $n = 114 = 6 \times 19$ is already a multiple of $m$, no operation is needed. The total cost is $0$ coins.