P9642 [SNCPC2019] 0689

Description

We call a string as a 0689-string if this string only consists of digits `0`, `6`, `8` and `9`. Given a 0689-string $s$ of length $n$, one $\textbf{must}$ do the following operation exactly once: select a non-empty substring of $s$ and rotate it 180 degrees. More formally, let $s_i$ be the $i$-th character in string $s$. After rotating the substring starting from $s_l$ and ending at $s_r$ 180 degrees ($1 \le l \le r \le n$), string $s$ will become string $t$ of length $n$ extracted from the following equation, where $t_i$ indicates the $i$-th character in string $t$: $$t_i = \begin{cases} s_i & \text{if } 1 \le i < l \text{ or } r < i \le n \\ \text{`0'} & \text{if } l \le i \le r \text{ and } s_{l+r-i} = \text{`0'} \\ \text{`6'} & \text{if } l \le i \le r \text{ and } s_{l+r-i} = \text{`9'} \\ \text{`8'} & \text{if } l \le i \le r \text{ and } s_{l+r-i} = \text{`8'} \\ \text{`9'} & \text{if } l \le i \le r \text{ and } s_{l+r-i} = \text{`6'} \\ \end{cases}$$ What's the number of different strings one can get after the operation?

Input Format

There are multiple test cases. The first line of the input contains an integer $T$, indicating the number of test cases. For each test case: The first and only line contains a 0689-string $s$ ($1 \le |s| \le 10^6$). It's guaranteed that the sum of $|s|$ of all test cases will not exceed $10^7$.

Output Format

For each test case output one line containing one integer, indicating the number of different strings one can get after applying the operation exactly once.

Explanation/Hint

We hereby explain the first sample test case. $$\begin{array}{|c|c||c|c|}\hline \textbf{Substring} & \textbf{Result} & \textbf{Substring} & \textbf{Result} \\ \hline 0 & 0689 & 68 & 0899 \\ \hline 6 & 0989 & 89 & 0668 \\ \hline 8 & 0689 & 068 & 8909 \\ \hline 9 & 0686 & 689 & 0689 \\ \hline 06 & 9089 & 0689 & 6890 \\ \hline \end{array}$$ It's easy to discover that we can get $8$ different strings after the operation.