SP20173 DIVCNT2 - Counting Divisors (square)
Description
Let $ \sigma_0(n) $ be the number of positive divisors of $ n $ .
For example, $ \sigma_0(1) = 1 $ , $ \sigma_0(2) = 2 $ and $ \sigma_0(6) = 4 $ .
Let
$$ S_2(n) = \sum _{i=1}^n \sigma_0(i^2). $$
Given $ N $ , find $ S_2(N) $ .
Input Format
First line contains $ T $ ( $ 1 \le T \le 10000 $ ), the number of test cases.
Each of the next $ T $ lines contains a single integer $ N $ . ( $ 1 \le N \le 10^{12} $ )
Output Format
For each number $ N $ , output a single line containing $ S_2(N) $ .