GSS7 - Can you answer these queries VII
题意翻译
# 题目描述
给定一棵树,有$N(N \le 100000)$个节点,每一个节点都有一个权值$x_i (|x_i| \le 10000)$
你需要执行$Q (Q \le 100000)$次操作:
1. `1 a b` 查询`(a,b)`这条链上的最大子段和,可以为空(即输出$0$)
2. `2 a b c` 将`(a,b)`这条链上的所有点权变为`c` $(|c| <= 10000)$
# 输入格式:
第一行一个整数$N$
接下来一行有$N$个整数表示$x_i$
接下来$N-1$行,每行两个整数$u,v$表示$u$和$v$之间有一条边相连
接下来一行一个整数$Q$
之后有$Q$行,每行诸如`1 a b`或者`2 a b c`
# 输出格式
对于每一个询问,输出答案
# 输入样例
``` plain
5
-3 -2 1 2 3
1 2
2 3
1 4
4 5
3
1 2 5
2 3 4 2
1 2 5
```
# 输出样例
``` plain
5
9
```
题目描述
Given a tree with N (_N_ <= 100000) nodes. Each node has a interger value x\_i (_|x\_i|_ <= 10000).
You have to apply Q (_Q_ <= 100000) operations:
1\. _1 a b_ : answer the maximum contiguous sum (maybe empty,will always larger than or equal to 0 ) from the path _a->b_ ( inclusive ).
2\. _2 a b c_ : change all value in the path _a->b_ ( inclusive ) to _c_. (_|c|_ <= 10000)
输入输出格式
输入格式
first line consists one interger N.
next line consists N interger x\_i.
next N-1 line , each consists two interger u,v , means that node u and node v are connected
next line consists 1 interger Q.
next Q line : _1 a b_ or _2 a b c_ .
输出格式
For each query, output one line the maximum contiguous sum.
输入输出样例
输入样例 #1
5
-3 -2 1 2 3
1 2
2 3
1 4
4 5
3
1 2 5
2 3 4 2
1 2 5
输出样例 #1
5
9