U203487 「PMOI-5」一道防不住 AK 的水题 加强版
题目背景
之前的题在 $p$ 较小的时候有特殊做法,故增加了加强版。
题目描述
有 $m$ 个盒子和 $n$ 个操作,盒子编号为 $0\dots m-1$。第 $i$ 个操作一共会进行 $r_i-l_i+1$ 轮,第 $j$ 轮会在编号为 $(k(j-1+l_i)+b_i)\bmod m$ 的盒子里放 $a_i$ 个球($j$ 从 $1$ 开始枚举)。
在所有操作完成后,你需要选出 $p$ 个不同的且编号不相邻的盒子,定义一次选择的价值为 $p$ 个盒子里面球个数的乘积。求所有选择方案的价值和模 $10^9+7$。
输入格式
第一行四个整数 $n,k,m,p$,表示操作个数,两种关于操作参数和选出的盒子个数。
接下来 $n$ 行,第 $i$ 行四个非负整数 $l_i,r_i,b_i,a_i$ 表示一次操作的参数。
输出格式
一个整数表示价值和对 $10^9+7$ 取模的结果。
说明/提示
对于 $100\%$ 的数据,$1\le n\le 50$,$1\le m\le 10^{18}$,$1\le p\le 100$,$0\le b_i< m$,$0