线段树分治&可撤销并查集

题单介绍

可撤销并查集的题目在前,线段树分治的题目在后。 大致按题目难度排列。 将这两个知识点放在一起是因为本人初学线段树分治时做的题均用到了可撤销并查集,并且该用法非常经典。 ## 可撤销并查集 AT_abc314_f, CF1444C, AT_abc302_h, CF891C, P3402, AT_abc301_h, CF750H ## 线段树分治 ### 线段树分治与可撤销并查集I(板题) P5787, CF813F, P5214, P5227, P2147, P4219 ### 线段树分治与可撤销并查集II(基础运用) CF1681F, P5631, AT_abc163_f, CF1140F ### 线段树分治与字典树 AT_abc308_g, P4585, CF938G, P3733 ### 线段树分治的其他用法 CF981E, CF601E, CF678F, AT_abc308_h ### 试一试! CF603E, CF576E, P5416, P4632, P7274, P9168

题目列表

  • [ABC314F] A Certain Game
  • Team-Building
  • [ABC302Ex] Ball Collector
  • Envy
  • 【模板】可持久化并查集
  • [ABC301Ex] Difference of Distance
  • New Year and Snowy Grid
  • 【模板】线段树分治 / 二分图
  • Bipartite Checking
  • [SHOI2014] 神奇化合物
  • [AHOI2013] 连通图
  • [SDOI2008] 洞穴勘测
  • 「REOI-p1」按摩
  • [BJOI2014] 大融合
  • Unique Occurrences
  • 最小mex生成树
  • [ABC163F] path pass i
  • Extending Set of Points
  • Communication Towers
  • [ABC308G] Minimum Xor Pair Query
  • [FJOI2015] 火星商店问题
  • Shortest Path Queries
  • [HAOI2017] 八纵八横
  • [JOISC 2020] 掃除
  • Addition on Segments
  • A Museum Robbery
  • Lena and Queries
  • [WC2005] 双面棋盘
  • [ABC308Ex] Make Q
  • Pastoral Oddities
  • Painting Edges
  • [省选联考 2023] 人员调度
  • [APIO2018] 新家
  • [CTSC2016] 时空旅行
  • 草地
  • [USACO19FEB] Mowing Mischief P
  • [CERC2018] The Bridge on the River Kawaii